地表温度遥感反演进展与展望

李召良

Tel: 13501025240; (010)82105077 Email: lizl@unistra.fr; lizhaoliang@caas.cn

个人研究方向与兴趣

•定量热红外遥感的基础理论与应用

- > 地表温度, 地表比辐射率反演
- > 大气廓线,大气水气含量反演
- ▶ 土壤湿度,土壤热惯量反演等
- •区域地表通量遥感反演模型
- •尺度转换

地表温度热红外定量遥感反演 进展与展望

• 定标是把传感器输出信号转换为物理量的过程。

产品质量评估是对产品的期望性能(如产品的取值范围和一般影像质量)进行评估的过程,但它只能评价产品的一致性和稳定性(标记产品异常),而无法告知用户产品的准确性。

真实性检验(Validation)是用独立的方法来评价遥感数据产品、遥感反演产品及遥感应用产品的真实性和准确性,以及满足传感器设计指标要求程度的过程。

地表温度的重要性

- 地表温度是众多基础学科和应用领域的 一个重要特征物理量,能提供地表能量 平衡状态的时空变化信息
- 地表温度既可作为地表过程等模型的输入参数,又可用于验证这些模型的输出结果
- ●国际地圈生物圈计划(IGBP)将地表温度 列为<mark>优先</mark>测定的参数之一

◆热红外遥感反演地表温度

地表温度反演的难点

- 反演是欠定的:测量值个数总小于反 演参数的个数,方程是病态求解
- 反演不稳定:测量量高度相关
- 地表温度、比辐射率、大气下行辐射
 三者耦合,相互制约和影响
- 大气纠正难:大气不仅有吸收、散射 作用,其自身还有发射特性
- 中红外波段既包括地表和大气的自身 辐射以及地表反射的大气下行辐射, 还包括地表反射的太阳辐射
- 地表温度与地表比辐射率的物理解译
- 反演参数地面验证困难

红外辐射传输方程:

$$B_{i}(T_{i}) = \varepsilon_{i}B_{i}(T_{s})\tau_{i}$$

$$+ (1 - \varepsilon_{i})(R_{atm_{i}} \downarrow + R_{atm_{i}}^{s} \downarrow)\tau_{i}$$

$$+ R_{atm_{i}} \uparrow + R_{atm_{i}}^{s} \uparrow + \rho_{bi}R_{i}^{s}\tau_{i}$$

热红外测量值相关性示意图

Ts与ɛ的关系图

比辐射率的影响

ε_i

Definition of Surface Variables at Large Scale: Principe

地表温度和比辐射率的定义

 $\langle \varepsilon \rangle = 1 - \langle r \rangle$ $\langle Ts \rangle = B^{-1} \left(\frac{\langle R \rangle - \langle r \rangle R_{atm\downarrow}}{1 - \langle r \rangle} \right)$

比辐射率(ε)已知-Single Channel Method

- It takes the radiance measured by satellite in one channel and corrects it for residual atmospheric absorption and emission by a radiative transfer code which requires input data on the atmospheric profiles (P. T. U)
- Surface temperature is derived by inverting the radiative transfer equation

比辐射率(ε)已知-Single Channel Method

•The accurate determination of Ts using this type of method requires

A good quality of radiative transfer code

A good knowledge of surface emissivity

≻An accurate atmospheric profiles

Correct consideration of Topographic effects

•Drawback

Requirement of additional information (i.e. atmospheric profiles) which is usually not available with sufficient spatial density or at the time of the passage of satellite.

比辐射率(ε)已知-Split-Window Method

This method is based on the differential absorption in the two adjacent channels, centered at 11 and $12\mu m$, to correct for atmospheric effects.

比辐射率(ε)已知-Split-Window Method

Accuracy of Ts retrieval is dependent on the correct choice of the coefficients a_k

Split-Window Method-How to get the coefficients ak

➤Empirical method

➢Simulation method

比辐射率 (ε) 已知-Split-Window Method 优 无需大气廓线数据,无需考虑地形影响 点 分裂窗算法对c的误差非常敏感 160 β $0.96 \le \overline{\varepsilon_5} \le 1.0$ θ_v -dep θ_v -indep 140 $-0.025 \leq \overline{\epsilon_4} - \overline{\epsilon_5} \leq 0.015$ (°K) $\alpha - \beta \alpha - \dot{\beta}$ 缺 -4 to +16 ● c的确定具有很大的误差和不 -16 to +4 120 确定性 点 100 α 80 $\alpha(\mu_V)$ 60 -60 50 0.3 0.5 0.7 0.8 0.9 0.4 0.6 $\cos(\mu_{\nu})$ Ts对定的敏感性分析图 降低Ts的反演精度

比辐射率(ε)已知- Multi-angle Method

This method is based on the differential absorption due to the difference in atmospheric path length when an object is seen from two different view angles.

算 法	线性: $T_s = T_n + p_1(T_n - T_f) + p_2 + p_3(1 - \varepsilon_n) + p_4(\varepsilon_n - \varepsilon_f)$ 非线性: $T_s = T_n + q_1(T_n - T_f) + q_2(T_n - T_f)^2 + (q_3 + q_4WV)(1 - \varepsilon_n) + (q_5 + q_6WV)\Delta\varepsilon + q_0$
优 点	● Do not need to know the optical properties of the atmospheric absorbents. 无需大气廓线数据
缺 点	 只适用于海水表面温度反演 (AATSR反演优于0.3K) 不能用于陆地表面温度反演 由于陆地表面三维结构和空间非均一性,不同观测角度 对应的象元大小不同,组成成分不一致,导致不同观测 角度情况下地表温度不同

分两步: 先确定比辐射率, 再反演地表温度

1. Classification-based emissivity method

2. NDVI-based emissivity method

代表性方法

3. Day/night temperature-independent spectral-indices (TISI) based method

比辐射率未知-已知大气信息,同时求解 Ts 和 ε

- 1. Two-temperature method (TTM)
- Physics-based day/night operational method (D/N) 假定两个时刻 ε 不变,减少未知数,使方程数目大于未知数 数目

- 3. Gray body emissivity method (GBE)
- 4. Temperature emissivity separation method (TES)
- 5. Iterative spectrally smooth temperature emissivity separation method (ISSTES)
- 6. Linear emissivity constraint temperature emissivity separation method (LECTES)

ISSTES

LECTES

分段线性示意图

1. Artificial neural network (ANN) method

2. Two-step physical retrieval method (TSRM)

MODIS地表温度反演结果

MOD11C1全球地表温度产品 (2002.7月-9月)

MODIS 多光谱算法获取的Ts图

热红外11μm地表比辐射率

2006年7月1日SEVIRI地表温度结果

地表温度产品的真实性检验

存在问题

- 地面测量地表温度,由于受周围环境和比辐射率的影响,非常困难
- 地表温度空间变化差异大,地面获取代表km级像元尺度的温度真值更加困难

温度直接比对验证方法仅适合于湖面、海面、植被茂密区等温度均 一地表,且只能于晚间进行,限制了温度产品的真实性检验

地表温度产品验证方法

1. Conventional temperature-based method

3. Cross validation method

Validation of the MODIS LST products

(test sites)

Rice field in Chico, CA

Bridgeport grassland, CA Snowcover, Bridgeport, CA

Validation of the MODIS LST products

In wet atmospheric conditions: (1) three TIR radiometers deployed in a rice field in State of Mississippi

Validation of the MODIS LST products

In wet atmospheric conditions: (2) five TIR radiometers deployed in a soybean field in State of Mississippi

Comparisons between V4 MODIS LSTs and in-situ values in field campaigns in 2000-2003

地表温度产品验证结果

MODIS地表温度验证结果

Compare the retrieved surface emissivities over Sahara Desert to those measured from sand samples in the Lab

Compare the retrieved surface emissivities in Caspian Sea to the calculated water surface emissivities

多光谱地表温度反演小结

≻大部分情况下地表温度产品的精度可以达到1K

> 现有多光谱传感器地表温度反演方法近乎完善, 很难再有新的进展

- ▶ 进一步开展温度产品的真实性检验
- ▶发展考虑气溶胶和cirrus影响的地表温度反演算法
- ▶重点开展如下几方面的研究

热红外地表温度反演问题与解决途径

MOD11C1全球地表温度产品 (2002.7月-9月)

MODIS 多光谱算法获取的Ts图

地表温度反演验证结果

对给定象元的观测角度和观测时间

热红外<mark>超光谱</mark>地表温度、比辐射率 与大气温湿廓线一体化物理反演现状

>研究尚处于起步阶段

〉信息远未得到充分挖掘和利用

反演参数的欠定问题和方程组的病态问题 也未从根本上得到解决

一体化物理反演是今后的一个主要研究内容

热红外地表温度反演问题与解决途径

MOD11C1全球地表温度产品(2002.7月-9月)

热红外地表温度反演问题与解决途径

<mark>热红外超光谱Ts</mark>与ε反演方法研究

 如何利用地物波谱与大气吸收谱之间的明显差异 实现Ts与ε的准确分离和反演?

如何利用热红外超光谱卫星数据的潜在信息进行 大气辐射纠正?

被动微波地表温度物理反演现状

>辐射传输的物理机理认识尚不够明确

- 大部分物理模型做了许多假设和简化,引入一些经验 关系来解决反演的欠定问题
- 尚未对地表温度反演作出真实的、完全物理意义的 定量描述
- ▶ 反演精度低 (~6K)
- > 未考虑微波直接反演的温度与地表温度之间的差异

被动微波地表温度物理反演方法研究 也是今后需要开展的研究内容之一

被动微波Ts产品与热红外Ts产品融合

- 现有融合方法都是针对卫星原始数据之间的融合提出来的,
 目的是提高遥感数据的时空分辨率和参数的反演精度
- ➢ 热红外Ts产品与微波Ts产品之间的融合还未见报道

被动微波Ts产品与热红外Ts产品融合方法研究 也是今后需要开展的研究内容

在热辐射的方向性解译,地表温度昼夜变化模型等方面开 展了一些研究工作,但在极轨卫星地表温度产品的时间归 一化与角度归一化研究方面还<mark>未见报道</mark>

热红外遥感数据提供信息

- Intensity
- Spectral λ 使用最多: Ts和 ϵ_{λ} 反演; 干旱指标; 土壤湿度
- Spatial I(x,y)→ 少: 大气水汽含量反演;
 Ts和εi反演:利用2相邻象元
 Ts不同, ε相同
- Temporal I(t) → ☆
- Angular $I(\theta) \rightarrow$
- Polarization I_{v,h}

仅两个时刻:白天/晚上。 **Ts**和εi同时反演;热惯量估算

联合使用

ATSR系列:2角度 组分温度反演

应用很少

开展混合象元组分温度提取方法研究

利用多角度+多光谱遥感数据(ATSR系列卫星)

植被结构参数: 可通过多角度可见光波段数据提取

组分温度: 可通过多角度热红外波段数据 +热辐射传输模型提取

问题

角度只有2个 缺乏可反演的热辐射传输模型 不同角度观测面积大小不同

新一代静止气象卫星Ts反演方法研究

- 高时间分辨率
- 定点连续观测
- 高信噪比

优点: 无需进行时间和角度的归一化处理

- ▲ ◆ 缺少像MODIS一样能实时提供地表温度反演所需大气廓线的通道
- 点 红外通道数有限, MODIS多通道双时相地表温度反演方法失效

▶ 发展多时相多通道地表温度反演算法

开展静止气象卫星多时相数据挖掘研究

- •最大温度出现时间td、振幅与土壤湿度的关系?
 •夜晚温度变化与热惯量的关系?
- •上午地表温度的变化速率与土壤湿度的关系?
- ·云覆盖时段地表温度的变化与土壤湿度和热惯量的关系?
 ·植被是如何影响这些关系的?如何消除植被的影响?

多时相+多光谱(静止气象卫星)卫星数据挖掘

Rg or Rn(solar)

多光谱+空间信息的挖掘

Fig. 3. Definition of the TVDI. TVDI for a given pixel (NDVI/T_s) is estimated as the proportion between lines A and B (see Eq. (1)).

陆地表面温度与陆面过程模型同化研究

一天有一次卫星观测温度,同化得到的蒸散发结果比同化前要好
 没有卫星数据进行同化的天,结果几乎没有改善

重新参数化陆面过程: 如何用遥感可反演参数对陆面过程模型进行参数化?

Review Articles

地表蒸散发遥感估算

Z.-L. Li, R.L. Tang, Z. Wan, Y. Bi, C. Zhou, B.-H. Tang, G.J. Yan and X. Zhang, (2009), A review of current methodologies for regional evapotranspiration estimation from remotely sensed data. *Sensors*, 9: 3801-3853. doi:10.3390/s90503801

地表比辐射率反演

Z.-L. Li, H. Wu, N. Wang, Q. Shi, J.A. Sobrino, Z. Wan, B.-H. Tang, and G.J. Yan, (2013), Land surface emissivity retrieval from satellite data. *International Journal of Remote Sensing*. 34(9-10): 3084-3127 doi:10.1080/01431161.2012.716540

◆地表温度反演

Z.-L. Li, B.-H. Tang, H. Wu, H. Ren, G.J. Yan, Z. Wan, I.F. Trigo and J. Sobrino, (2013), Satellite-derived land surface temperature: Current status and perspectives. *Remote Sensing of Environment*. 131: 14-37. doi:10.1016/j.rse.2012.12.008